题目内容

设数列{an}的前n项的和Sn=,n=1,2,3,….

(1)求首项a1与通项an

(2)设Tn=,n=1,2,3,…,证明.

 

(1):由Sn=,n=1,2,3,….    ①

得a1=S1.

所以a1=2.

再由①有Sn-1an-1×2n+,n=2,3,…,           ②

将①和②相减得an=Sn-Sn-1=(an-an-1)-×(2n+1-2n),n=2,3,….

整理得an+2n=4(an-1+2n-1),n=2,3,….

因而数列{an+2n}是首项为a1+2=4,公比为4的等比数列,即an+2n=4×4n-1=4n,n=1,2,3,….

因而an=4n-2n,n=1,2,3,….

(2)证明:将an=4n-2n代入①得

Sn=×(4n-2n)-×2n+1+

=×(2n+1-1)(2n+1-2)

=×(2n+1-1)(2n-1).

Tn==().

所以,

=×(.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网