题目内容
已知函数f(x)=lnx-x+1(x∈[1,+∞)),数列{an}满足a1=e,
=e(n∈N*).
(1)求数列{an}的通项公式an;
(2)求f(a1)+f(a2)+…+f(an);
(3)求证:1•2•3•…•n≤e
(n∈N*).
| an+1 |
| an |
(1)求数列{an}的通项公式an;
(2)求f(a1)+f(a2)+…+f(an);
(3)求证:1•2•3•…•n≤e
| n(n-1) |
| 2 |
(1)∵
=e,∴{an}是等比数列,又a1=e,∴数列{an}的通项公式为:an=en.
(2)由(1)知,f(an)=lnen-en+1=(n+1)-en,
∴f(a1)+f(a2)+…+f(an)=[2+3+…+(n+1)]-(e+e2+…+en)
=
-
.
(3)由函数f(x)=lnx-x+1,得f′(x)=
-1,又x≥1,∴f'(x)≤0,
∴f(x)递减,∴f(x)≤f(1),
即f(x)≤0,也就是lnx≤x-1,
于是:ln1+ln2+…+lnn≤0+1+…+(n-1),
即ln(1•2•3•…•n)≤
,
故1•2•3…•n≤e
.
| an+1 |
| an |
(2)由(1)知,f(an)=lnen-en+1=(n+1)-en,
∴f(a1)+f(a2)+…+f(an)=[2+3+…+(n+1)]-(e+e2+…+en)
=
| n2+3n |
| 2 |
| e-en+1 |
| 1-e |
(3)由函数f(x)=lnx-x+1,得f′(x)=
| 1 |
| x |
∴f(x)递减,∴f(x)≤f(1),
即f(x)≤0,也就是lnx≤x-1,
于是:ln1+ln2+…+lnn≤0+1+…+(n-1),
即ln(1•2•3•…•n)≤
| n(n-1) |
| 2 |
故1•2•3…•n≤e
| n(n-1) |
| 2 |
练习册系列答案
相关题目