题目内容
已知{an}为等比数列,a1=1,前n项和为Sn,且
=28,数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=
x2+
x上.
(1)求{an}和{bn}的通项公式;
(2)设cn=an•bn,求{cn}的前n项和S′n.
| S6 |
| S3 |
| 1 |
| 2 |
| 1 |
| 2 |
(1)求{an}和{bn}的通项公式;
(2)设cn=an•bn,求{cn}的前n项和S′n.
(1)设等比数列的公比为q,则由
=28可知q≠1
∵
=28,∴
=1+q3=28,∴q=3
∵a1=1,∴an=3n-1
∵数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=
x2+
x上
∴Tn=
n2+
n
当n≥2时,bn=Tn-Tn-1= (
n2+
n)-[
(n-1)2+
(n-1)]=n
∵b1=T1=1
∴bn=n
(2)∵cn=an•bn=n•3n-1,∴S'n=1•30+2•31+3•32+…+n•3n-1,
∴3S'n=1•31+2•32+…+(n-1)•3n-1+n•3n,
两式相减,得-2S'n=1•30+1•31+1•32+…+1•3n-1-n•3n=
-n•3n=
-n•3n=
,
得 S'n=
.
| S6 |
| S3 |
∵
| S6 |
| S3 |
| 1-q6 |
| 1-q3 |
∵a1=1,∴an=3n-1
∵数列{bn}的前n项和为Tn,且点(n,Tn)均在抛物线y=
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时,bn=Tn-Tn-1= (
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵b1=T1=1
∴bn=n
(2)∵cn=an•bn=n•3n-1,∴S'n=1•30+2•31+3•32+…+n•3n-1,
∴3S'n=1•31+2•32+…+(n-1)•3n-1+n•3n,
两式相减,得-2S'n=1•30+1•31+1•32+…+1•3n-1-n•3n=
| 1-3n |
| 1-3 |
| 3n-1 |
| 2 |
| (1-2n)3n-1 |
| 2 |
得 S'n=
| (2n-1)3n+1 |
| 4 |
练习册系列答案
相关题目