题目内容
已知平面向量
,
,
(Ⅰ)若|
|=1,|
|=2,|
-
|=2,求|
+
|的值;
(Ⅱ)若
=(1,3),
=(-2,m),
⊥(
+2
),求m的值.
| a |
| b |
(Ⅰ)若|
| a |
| b |
| a |
| b |
| a |
| b |
(Ⅱ)若
| a |
| b |
| a |
| a |
| b |
分析:(I)由向量的数量积的性质可知|
-
|=
=
,可求2
•
,代入|
+
|=
=
可求
(II)利用向量的数量积的性质可知
•(
+2
)=0,可求
| a |
| b |
(
|
|
| a |
| b |
| a |
| b |
(
|
|
(II)利用向量的数量积的性质可知
| a |
| a |
| b |
解答:解:(I)∵|
|=1,|
|=2,|
-
|=2
∴|
-
|=
=
=
=2
∴2
•
=1
∴|
+
|=
=
=
(II)∵
=(1,3),
=(-2,m),
⊥(
+2
)
∴(1,3)•(-3,3+2m)=-3+9+6m=0
∴m=-1
| a |
| b |
| a |
| b |
∴|
| a |
| b |
(
|
|
5-2
|
∴2
| a |
| b |
∴|
| a |
| b |
(
|
|
| 6 |
(II)∵
| a |
| b |
| a |
| a |
| b |
∴(1,3)•(-3,3+2m)=-3+9+6m=0
∴m=-1
点评:本题主要考查了向量的数量积的性质及坐标表示的应用,属于基础试题
练习册系列答案
相关题目