题目内容
设数列{an}的前n项和Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,且m≠-3,m≠0.
(Ⅰ)求证{an}是等比数列,并写出它的通项公式;
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=
f(bn-1)(n∈N,n≥2),求bn.
(Ⅰ)求证{an}是等比数列,并写出它的通项公式;
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=
| 3 | 2 |
分析:(Ⅰ)由(3-m)Sn+2man=m+3得(3-m)Sn+1+2man+1=m+3,两式相减得(3+m)an+1=2man,易证{an}是等比数列,并写出它的通项公式.
(Ⅱ)b1=a1=1,q=f(m)=
,n∈N且n≥2时,bn=
f(bn-1)=
•
,bnbn-1+3bn=3bn-1,
-
=
,通过数列{
}的通项求出bn.
(Ⅱ)b1=a1=1,q=f(m)=
| 2m |
| m+3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 2bn-1 |
| bn-1+3 |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| 3 |
| 1 |
| bn |
解答:(本小题满分12分)
解:(Ⅰ)由(3-m)Sn+2man=m+3得(3-m)Sn+1+2man+1=m+3,两式相减得(3+m)an+1=2man…(3分)m≠0且m≠-3,
∴
=
,
∴{an}是等比数列 …(6分)
又a1=1,∴an=(
)n-1…(6分)
(Ⅱ)b1=a1=1,q=f(m)=
,∴n∈N且n≥2时,bn=
f(bn-1)=
•
,bnbn-1+3bn=3bn-1,
-
=
…(9分)
∴{
}是1为首项
为公差的等差数列
∴
=1+
=
,∴bn=
…(12分)
解:(Ⅰ)由(3-m)Sn+2man=m+3得(3-m)Sn+1+2man+1=m+3,两式相减得(3+m)an+1=2man…(3分)m≠0且m≠-3,
∴
| an+1 |
| an |
| 2m |
| m+3 |
∴{an}是等比数列 …(6分)
又a1=1,∴an=(
| 2m |
| m+3 |
(Ⅱ)b1=a1=1,q=f(m)=
| 2m |
| m+3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 2bn-1 |
| bn-1+3 |
| 1 |
| bn |
| 1 |
| bn-1 |
| 1 |
| 3 |
∴{
| 1 |
| bn |
| 1 |
| 3 |
∴
| 1 |
| bn |
| n-1 |
| 3 |
| n+2 |
| 3 |
| 3 |
| n+2 |
点评:本题考查数列性质的判断,通项公式求解.考查转化构造,运算求解能力.
练习册系列答案
相关题目