题目内容
已知函数f(x)=
(b, c∈N*),并且f(0)=0,f(2)=2,f(-2)<-
.
(Ⅰ)求a,b,c的值;
(Ⅱ)是否存在各项均不为零的数列{an},满足4Snf(
)=1(Sn为数列{an}的前n项和).若有,写出数列的一个通项公式an,并说明满足条件的数列{an}是否唯一确定;若无,请说明理由.
| x2+a |
| bx-c |
| 1 |
| 2 |
(Ⅰ)求a,b,c的值;
(Ⅱ)是否存在各项均不为零的数列{an},满足4Snf(
| 1 |
| an |
(本小题满分14分)
(Ⅰ)由f(0)=0,得a=0.
由f(2)=2,f(-2)<-
,得
(b, c∈N*),即
(b, c∈N*).…(3分)
解得 b=c=2.
因此,a=0,b=c=2.…(5分)
(Ⅱ)由(Ⅰ)得f(x)=
.当x≠0且an≠1时,
=
-
,
=2x-2x2.
设存在各项均不为零的数列{an},满足4Snf(
)=1.则4Sn=2an-2an2,即2Sn=an-an2(an≠0且an≠1).…(6分)
首先,当n=1时,a1=S1=-1;…(7分)
由 2Sn+1=an+1-an+12,2Sn=an-an2,得2an+1=2Sn+1-2Sn=an+1-an+12-an+an2,即(an+1+an)(an+1-an+1)=0.…(9分)
若 an+1+an=0,则由a1=-1,得a2=1,这与an≠1矛盾.…(10分)
若 an+1-an+1=0,则 an+1-an=-1.
因此,{an}是首项这-1,公差为-1的等差数列.
通项公式为 an=-n.
综上可得,存在数列{an},an=-n符合题中条件.…(11分)
由上面的解答过程可知,数列{an}只要满足条件(an+1+an)(an+1-an+1)=0即可.
因此,可以数列一部分满足an+1-an=-1,另一部分满足an+1+an=0,且保证an≠0且an≠1.
例如:数列-1,-2,2,-2,2,-2,2,…;
数列-1,-2,2,-2,-3,3,-3,-4,4,-4,…
因此,满足条件的数列不唯一.…(14分)
(Ⅰ)由f(0)=0,得a=0.
由f(2)=2,f(-2)<-
| 1 |
| 2 |
|
|
解得 b=c=2.
因此,a=0,b=c=2.…(5分)
(Ⅱ)由(Ⅰ)得f(x)=
| x2 |
| 2x-2 |
| 1 |
| f(x) |
| 2 |
| x |
| 2 |
| x2 |
| 1 | ||
f(
|
设存在各项均不为零的数列{an},满足4Snf(
| 1 |
| an |
首先,当n=1时,a1=S1=-1;…(7分)
由 2Sn+1=an+1-an+12,2Sn=an-an2,得2an+1=2Sn+1-2Sn=an+1-an+12-an+an2,即(an+1+an)(an+1-an+1)=0.…(9分)
若 an+1+an=0,则由a1=-1,得a2=1,这与an≠1矛盾.…(10分)
若 an+1-an+1=0,则 an+1-an=-1.
因此,{an}是首项这-1,公差为-1的等差数列.
通项公式为 an=-n.
综上可得,存在数列{an},an=-n符合题中条件.…(11分)
由上面的解答过程可知,数列{an}只要满足条件(an+1+an)(an+1-an+1)=0即可.
因此,可以数列一部分满足an+1-an=-1,另一部分满足an+1+an=0,且保证an≠0且an≠1.
例如:数列-1,-2,2,-2,2,-2,2,…;
数列-1,-2,2,-2,-3,3,-3,-4,4,-4,…
因此,满足条件的数列不唯一.…(14分)
练习册系列答案
相关题目