题目内容
已知直线
:
交圆C:
于
两点,当
最短时,直线
的方程是( )
最短时,直线
| A. | B. | C. | D. |
A
本题考查直线与圆的位置关系..
由
得
,则直线
恒过定点
,直线
的斜率
;
因为
,所以点
在圆C内。
又由
得
,即圆C的圆心为
,半径为
;
由垂径定理知,当
时弦最短,此时有
因为
的斜率为
,所以
,则
,
所以所求直线
的方程为
故正确答案为A
由
因为
又由
由垂径定理知,当
因为
所以所求直线
故正确答案为A
练习册系列答案
相关题目