题目内容
已知函数f(x)=e-x(cosx+sinx),将满足f'(x)=0的所有正数x从小到大排成数列{xn}.
(Ⅰ)证明数列{f{xn}}为等比数列;
(Ⅱ)记Sn是数列{xnf{xn}}的前n项和,求
.
(Ⅰ)证明数列{f{xn}}为等比数列;
(Ⅱ)记Sn是数列{xnf{xn}}的前n项和,求
| lim |
| n→∞ |
| S1+S2+…+Sn |
| n |
(Ⅰ)证明:f'(x)=-e-x(cosx+sinx)+e-x(-sinx+cosx)=-2e-xsinx.
由f'(x)=0,得-2e-xsinx=0.
解出x=nπ,n为整数,从而xn=nπ,n=1,2,3,f(xn)=(-1)ne-nπ.
=-e-π.
所以数列{f{xn}}是公比q=-e-π的等比数列,且首项f(x1)=q.
(Ⅱ)Sn=x1f(x1)+x2f(x2)++xnf(xn)=πq(1+2q++nqn-1),
qSn=πq(q+2q2++nqn),
Sn-qSn=πq(1+2q2++qn-1-nqn)
=πq(
-nqn),
从而
=
-
(1+q++qn-1)-
(1+2q++nqn-1)
=
-
-
(
-nqn)
=
-
(1-qn)+
.
因为|q|=e-π<1.
qn=0,
所以
=
=
.
由f'(x)=0,得-2e-xsinx=0.
解出x=nπ,n为整数,从而xn=nπ,n=1,2,3,f(xn)=(-1)ne-nπ.
| f(xn+1) |
| f(xn) |
所以数列{f{xn}}是公比q=-e-π的等比数列,且首项f(x1)=q.
(Ⅱ)Sn=x1f(x1)+x2f(x2)++xnf(xn)=πq(1+2q++nqn-1),
qSn=πq(q+2q2++nqn),
Sn-qSn=πq(1+2q2++qn-1-nqn)
=πq(
| 1-qn |
| 1-q |
从而
| S1+S2++Sn |
| n |
=
| πq |
| (1-q)2 |
| πq2 |
| n(1-q)2 |
| πq2 |
| n(1-q) |
=
| πq |
| (1-q)2 |
| πq2 |
| n(1-q)2 |
| 1-qn |
| 1-q |
| πq2 |
| n(1-q)2 |
| 1-qn |
| 1-q |
=
| πq |
| (1-q)2 |
| 2πq2 |
| n(1-q)3 |
| πqn+2 |
| (1-q)2 |
因为|q|=e-π<1.
| lim |
| n→∞ |
所以
| lim |
| n→∞ |
| S1+S2++Sn |
| n |
| πq |
| (1-q)2 |
| -πeπ |
| (eπ+1)2 |
练习册系列答案
相关题目