题目内容
设数列{an}是公比为q的等比数列,|q|>1,令bn=an+2(n∈N*),若数列{bn}有连续四项在集合{-52,-22,20,38,83}中,则公比q的值为______.
∵bn=an+2
∴an=bn-2
∵数列{bn}有连续四项在集合{-52,-22,20,38,83}中
∴数列{an}有连续四项在集合{-54,-24,18,36,81}中
又∵数列{an}是公比为q的等比数列,|q|>1
∴在集合{-54,-24,18,36,81}中,数列{an}的连续四项只能是:-24,36,-54,81
∴q=
=-
故答案为:-
∴an=bn-2
∵数列{bn}有连续四项在集合{-52,-22,20,38,83}中
∴数列{an}有连续四项在集合{-54,-24,18,36,81}中
又∵数列{an}是公比为q的等比数列,|q|>1
∴在集合{-54,-24,18,36,81}中,数列{an}的连续四项只能是:-24,36,-54,81
∴q=
| 36 |
| -24 |
| 3 |
| 2 |
故答案为:-
| 3 |
| 2 |
练习册系列答案
相关题目