题目内容
已知f(x)是(-∞,0)∪(0,+∞)上偶函数,当x∈(0,+∞)时,f(x)是单调增函数,且f(1)=0,则f(x+1)<0的解集为
(-2,-1)∪(-1,0)
(-2,-1)∪(-1,0)
.分析:由已知,不等式f(x+1)<0等价于f(|x+1|)<f(1),再利用函数f(x)在(0,+∞)上的单调性,可去掉函数符号“f”,从而不等式可解.
解答:解:由于f(1)=0,所以不等式f(x+1)<0可化为f(x+1)<f(1),
又f(x)是(-∞,0)∪(0,+∞)上的偶函数,
所以f(x+1)<f(1)?f(|x+1|)<f(1),
而当x∈(0,+∞)时,f(x)是单调增函数,
所以0<|x+1|<1,解得-2<x<0,且x≠-1.
即f(x+1)<0的解集为(-2,-1)∪(-1,0).
故答案为:(-2,-1)∪(-1,0).
又f(x)是(-∞,0)∪(0,+∞)上的偶函数,
所以f(x+1)<f(1)?f(|x+1|)<f(1),
而当x∈(0,+∞)时,f(x)是单调增函数,
所以0<|x+1|<1,解得-2<x<0,且x≠-1.
即f(x+1)<0的解集为(-2,-1)∪(-1,0).
故答案为:(-2,-1)∪(-1,0).
点评:本题主要考查抽象函数的单调性、奇偶性,偶函数在关于原点对称的区间上单调性相反,而奇函数在关于原点对称的区间上单调性相同.
练习册系列答案
相关题目
已知f (x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f (log47),b=f (log
3),c=f(0.20.6),则a,b,c的大小关系是( )
| 1 |
| 2 |
| A、c<b<a |
| B、b<c<a |
| C、c>a>b |
| D、a<b<c |
已知f(x)是定义在R上的奇函数,且在[0,+∞)单调递增,若f(lgx)<0,则x的取值范围是( )
| A、(0,1) | B、(1,10) | C、(1,+∞) | D、(10,+∞) |