题目内容
【题目】已知向量
,函数
,若函数f(x)图象的两个相邻的对称轴间的距离为
.
(1)求函数f(x)的单调增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若△ABC满足f(A)=1,a=3,BC边上的中线长为3,求△ABC的面积.
【答案】
(1)解:向量
,
则函数 ![]()
=2
sinωxcosωx+2cos2ωx﹣1
=
sin2ωx+cos2ωx
=2sin(2ωx+
),
由函数f(x)图象的两个相邻的对称轴间的距离为
,
T=π=
,解得ω=1;
∴f(x)=2sin(2x+
),
令﹣
+2kπ
+2kπ,k∈Z,
解得﹣
+kπ≤x≤
+kπ,k∈Z,
∴函数f(x)的单调增区间为[﹣
+kπ,
+kπ],k∈Z
(2)解:△ABC满足f(A)=1,
∴2sin(2A+
)=1,
由0<A<π,得
<2A+
<
,
∴2A+
=
,解得A=
;
由a=3,得|
|=|
﹣
|=a=3①,
由BC边上的中线长为3,得|
+
|=6②;
由①②组成方程组,解得
=
,
∴|
||
|=
,
∴△ABC的面积为S=
|
||
|sin
= ![]()
【解析】(1)根据平面向量数量积的运算和三角恒等变换化f(x)为正弦型函数;根据对称轴求出周期和ω,写出解析式,求出函数f(x)的单调增区间;(2)根据f(A)=1求出A的值,再由a=|
|=3,BC边上的中线长得|
+
|=6;求出
的值,从而求出|
||
|的值,即可求出△ABC的面积.
练习册系列答案
相关题目