题目内容

(文)已知函数f(x)=2sinx+3tanx.项数为27的等差数列{an}满足an∈(-
π
2
π
2
),且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,则当k值为(  )有f(ak)=0.
分析:由函数的解析式可得函数为奇函数,图象过原点,由等差数列的性质可得 a1+a27=a2+a26=a3+a25
=…=2a14,故有f(a1)+f(a2)+f(a3)+…+f(a27)=0,可得f(a14)=0,故有a14 =0,易得k值.
解答:解:函数f(x)=2sinx+3tanx为奇函数,所以图象关于原点对称,图象过原点.
而等差数列{an}有27项,an∈(-
π
2
π
2
).
由等差数列的性质可得 a1+a27=a2+a26=a3+a25=…=2a14
若f(a1)+f(a2)+f(a3)+…+f(a27)=0,则必有f(a14)=0,故有a14 =0,
所以,k=14,
故选B.
点评:本题考查的知识点是函数的奇偶性及对称性,等差数列的性质应用.代数的核心内容是函数,函数的定义域、
值域、性质均为高考热点,所有要求同学们熟练掌握函数特别是基本函数的图象和性质,并能结合平移、对称、
伸缩、对折变换的性质,推出基本函数变换得到的函数的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网