题目内容
(2012•安庆二模)已知数列{an}的各项均为正数,其前n项和为Sn,且an=2
-1,n∈N*,数列b1,b2-b1,b3-b2…,bn-bn-1是首项为1,公比为
的等比数列.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若cn=anbn,求数列{cn}的前n项和Tn.
| Sn |
| 1 |
| 2 |
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)若cn=anbn,求数列{cn}的前n项和Tn.
分析:(Ⅰ)由an=2
-1,知Sn=
(an+1)2,由此能够证明数列{an}是等差数列.并求出an.
(Ⅱ)bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2-
,cn=(2n-1)(2-
)=2(2n-1)-
,先求数列{
}的前n项和An.由此能求出数列{cn}的前n项和Tn.
| Sn |
| 1 |
| 4 |
(Ⅱ)bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2-
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n-1 |
| 2n-1 |
| 2n-1 |
解答:(本题满分12分)
解(Ⅰ)∵an=2
-1,
∴Sn=
(an+1)2
当n≥2,an=Sn-Sn-1=
(an+1)2-
(an-1+1)2
=
(an2+2an-an-12-2an-1)
即(an+an-1)(an-an-1-2)=0,∴an-an-1=2,又a1=1,
故数列{an}是等差数列.且an=2n-1.…(4分)
(Ⅱ)∵bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2-
…(6分)
∴cn=(2n-1)(2-
)=2(2n-1)-
…(7分)
先求数列{
}的前n项和An.
∵
=1+
+
+
+…+
,
An=3-
,
∴An=6-
,
∴Tn=2n2+
-6.…(12分)
解(Ⅰ)∵an=2
| Sn |
∴Sn=
| 1 |
| 4 |
当n≥2,an=Sn-Sn-1=
| 1 |
| 4 |
| 1 |
| 4 |
=
| 1 |
| 4 |
即(an+an-1)(an-an-1-2)=0,∴an-an-1=2,又a1=1,
故数列{an}是等差数列.且an=2n-1.…(4分)
(Ⅱ)∵bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2-
| 1 |
| 2n-1 |
∴cn=(2n-1)(2-
| 1 |
| 2n-1 |
| 2n-1 |
| 2n-1 |
先求数列{
| 2n-1 |
| 2n-1 |
∵
| A | n |
| 3 |
| 2 |
| 5 |
| 22 |
| 7 |
| 23 |
| 2n-1 |
| 2n-1 |
|
| 1 |
| 2 |
| 2n+3 |
| 2n |
∴An=6-
| 2n+3 |
| 2n-1 |
∴Tn=2n2+
| 2n+3 |
| 2n-1 |
点评:本题考查等差数列的证明,求数列的前n项和,解题时要认真审题,仔细解答,注意迭代法和错位相减法的合理运用.
练习册系列答案
相关题目