题目内容
已知等差数列{an}中,a3a7=-16,a4+a6=0.
(1)求数列{an}的前n项和Sn;
(2)若数列{an}的公差大于0,数列{an}的前n项和为Sn,且bn=
,求数{bn}的前n项和Tn.
(1)求数列{an}的前n项和Sn;
(2)若数列{an}的公差大于0,数列{an}的前n项和为Sn,且bn=
| 1 | Sn+10n |
分析:(1)由等差数列的性质结合题意可得
,或
,分别求公差和首项代入求和公式可得;
(2)可知Sn=n2-9n,裂项可得bn=
-
,代入求和可得.
|
|
(2)可知Sn=n2-9n,裂项可得bn=
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(1)由等差数列的性质可得a3+a7=a4+a6=0,
又a3a7=-16,故
,或
,
当
时,可得公差d=
=-2,可得a1=a3-2d=8,
故Sn=na1+
d=-n2+9n;
当
时,可得公差d=
=2,可得a1=a3-2d=-8,
故Sn=na1+
d=n2-9n;
(2)可知Sn=n2-9n,故bn=
=
=
=
-
,
故{bn}的前n项和Tn=(1-
)+(
-
)+…+(
-
)=1-
=
又a3a7=-16,故
|
|
当
|
| a7-a3 |
| 7-3 |
故Sn=na1+
| n(n-1) |
| 2 |
当
|
| a7-a3 |
| 7-3 |
故Sn=na1+
| n(n-1) |
| 2 |
(2)可知Sn=n2-9n,故bn=
| 1 |
| Sn+10n |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故{bn}的前n项和Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查等差数列的求和公式,涉及分类讨论的思想以及裂项相消法求和,属中档题.
练习册系列答案
相关题目