题目内容

【题目】解答题
(1)(1)已知命题p:|x2﹣x|≥6,q:x∈Z且“p且q”与“非q”同时为假命题,求x的值.
(2)已知p:x2﹣8x﹣20≤0,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.

【答案】
(1)

解:∵非q是假,则q是真,

又∵P且q是假∴P假即非P真,

∴|x2﹣x|<6,且x∈Z,

∴﹣6<x2﹣x<6且x∈Z,

解之得:

∴x=﹣1,0,1,2


(2)

解:由题知,若p是q的必要不充分条件的等价命题为:p是q的充分不必要条件.

由x2﹣8x﹣20≤0,解得﹣2≤x≤10,

∴p:﹣2≤x≤10;

由x2﹣2x+1﹣m2≤0(m>0),整理得[x﹣(1﹣m)][x﹣(1+m)]≤0

解得 1﹣m≤x≤1+m,

∴q:1﹣m≤x≤1+m

又∵p是q的充分不必要条件

,∴m≥9,

∴实数m的取值范围是[9,+∞)


【解析】(1)解绝对值不等式|x2﹣x|≥6,我们可以求出命题p成立时,x的取值范围,再由p且q与非q都是假命题,可得x应满足P假且q真,由此构造关于x的不等式组,解不等式组即可得到x的取值范围;(2)由绝对值不等式及一元二次不等式的解法,得到p,q的等价命题.又由¬p是¬q的必要而不充分条件的等价命题为:p是q的充分不必要条件,再由判断充要条件的方法,我们可知命题“x∈A”是命题“x∈B”的充分不必要条件,得到A、B的关系,进而得到m的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网