题目内容
已知函数f(x)=sin2ωx+
sinωxsin(ωx+
)+1(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向左平移
个单位后,得到函数y=g(x)的图象,求g(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0,
]上的最值.
| 3 |
| π |
| 2 |
(Ⅰ)求ω的值;
(Ⅱ)将函数y=f(x)的图象向左平移
| π |
| 6 |
(Ⅲ)求函数f(x)在区间[0,
| 2π |
| 3 |
分析:由诱导公式、二倍角公式及辅助角公式对函数化简可得,f(x)=sin2ωx+
sinωxsin(ωx+
)+1=
+sin(2ωx-
)
(I)由周期公式可得,T=
可求ω
(II)由题意可得,g(x)=f(x+
)═
+sin(2x+
),要求函数g(x)的单调递减区间,只要令
π+2kπ≤2x+
≤
+2kπ,k∈Z可求
(III)由x∈[0,
]可得,-
≤2x-
≤
,结合正弦函数的性质可求函数的最大值及最小值
| 3 |
| π |
| 2 |
| 3 |
| 2 |
| π |
| 6 |
(I)由周期公式可得,T=
| 2π |
| 2ω |
(II)由题意可得,g(x)=f(x+
| π |
| 6 |
| 3 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
(III)由x∈[0,
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
解答:解:f(x)=sin2ωx+
sinωxsin(ωx+
)+1
=
+
sinωxcosωx+1
=
-
cos2ωx+
sin2ωx
=
+sin(2ωx-
)
(I)由周期公式可得,T=
=π
∴ω=1,f(x)=
+sin(2x-
)
(II)由题意可得,g(x)=f(x+
)=
+sin[2(x+
)-
]
=
+sin(2x+
)
令
π+2kπ≤2x+
≤
+2kπ,k∈Z
可得,
+kπ≤x≤
+kπk∈Z
函数g(x)的单独递减区间为[
+kπ,
+kπ],k∈Z
(III)由x∈[0,
]可得,-
≤2x-
≤
∴-
≤sin(2x-
)≤1
∴1≤f(x)≤
故f(x) max=
,f(x)min=1
| 3 |
| π |
| 2 |
=
| 1-cos2ωx |
| 2 |
| 3 |
=
| 3 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
=
| 3 |
| 2 |
| π |
| 6 |
(I)由周期公式可得,T=
| 2π |
| 2ω |
∴ω=1,f(x)=
| 3 |
| 2 |
| π |
| 6 |
(II)由题意可得,g(x)=f(x+
| π |
| 6 |
| 3 |
| 2 |
| π |
| 6 |
| π |
| 6 |
=
| 3 |
| 2 |
| π |
| 6 |
令
| 1 |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
可得,
| π |
| 6 |
| 2π |
| 3 |
函数g(x)的单独递减区间为[
| π |
| 6 |
| 2π |
| 3 |
(III)由x∈[0,
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
∴-
| 1 |
| 2 |
| π |
| 6 |
∴1≤f(x)≤
| 5 |
| 2 |
故f(x) max=
| 5 |
| 2 |
点评:本题主要考查了三角函数的最一般的试题类型:由三角公式对所给的函数进行化简为y=Asin(ωx+φ)的形式,然后再考查正弦函数的相关性质,属于三角函数的综合应用.
练习册系列答案
相关题目