题目内容

(本小题满分13分)

已知椭圆经过点,且两焦点与短轴一端点构成等腰直角三角形。

(1)求椭圆的方程;

(2)动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T。若存在,求出点T的坐标;若不存在,请说明理由。

 

 

 

【答案】

即两圆相切于点(0,1),因此,所求的点T如果存在,

只能是(0,1)。事实上,点T(0,1)就是所求的点。…………………………7分

证明如下:

当直线L垂直于x轴时,以AB为直径的圆过点T(0,1)

若直线L不垂直于x轴,可设直线L:

记点……………………………… 9分

所以TA⊥TB,即以AB为直径的圆恒过点T(0,1)

所以在坐标平面上存在一个定点T(0,1)满足条件.…………………………13分

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网