题目内容
已知数列{an}满足a1=| 25 |
| 4 |
| an |
| n |
分析:先由数列的递推关系式求得an=
+n2-n,再代入
利用基本不等式求得其最小值即可.(注意n为正整数).
| 25 |
| 4 |
| an |
| n |
解答:解:因为a1=
,an+1-an=2n,
所以an=an-1+2(n-1)
=an-2+2(n-2)+2(n-1)
=an-3+2(n-3)+2(n-2)+2(n-1)
=…
=a1+2×1+2×2+…+2(n-1)
=
+2×
=
+n2-n.
∴
=
+n-1≥2
-1,当
=n时取最小值,此时?n2=
,
又因为n∈N,故取n=3.
故答案为:3.
| 25 |
| 4 |
所以an=an-1+2(n-1)
=an-2+2(n-2)+2(n-1)
=an-3+2(n-3)+2(n-2)+2(n-1)
=…
=a1+2×1+2×2+…+2(n-1)
=
| 25 |
| 4 |
| (n-1)[1+(n-1)] |
| 2 |
=
| 25 |
| 4 |
∴
| an |
| n |
| 25 |
| 4n |
|
| 25 |
| 4n |
| 25 |
| 4 |
又因为n∈N,故取n=3.
故答案为:3.
点评:解决本题的关键在于由数列的递推关系式求得an=
+n2-n,对与本题求数列的通项公式也可以用叠加法.
| 25 |
| 4 |
练习册系列答案
相关题目