题目内容
已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项的和为Sn,且Sn=
(n∈N*).
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求证:cn+1<cn
(3)求数列{cn}的前n项和Tn.
| 1-bn |
| 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,求证:cn+1<cn
(3)求数列{cn}的前n项和Tn.
(1)∵等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,
∴a3=5,a5=9,∴d=
=2
∴an=a5+2(n-5)=2n-1
∵Sn=
,∴n≥2时,bn=Sn-Sn-1=
,∴
=
∵n=1时,b1=S1=
,∴b1=
∴bn=
•(
)n-1=(
)n;
(2)证明:由(1)知cn=an•bn=
∴cn+1-cn=
-
=
≤0
∴cn+1<cn
(3)Tn=
+
+…+
∴
Tn=
+…+
+
两式相减可得:
Tn=
+
+…+
-
=
-
•
∴Tn=1-
.
∴a3=5,a5=9,∴d=
| a5-a3 |
| 5-3 |
∴an=a5+2(n-5)=2n-1
∵Sn=
| 1-bn |
| 2 |
| bn-1-bn |
| 2 |
| bn |
| bn-1 |
| 1 |
| 3 |
∵n=1时,b1=S1=
| 1-b1 |
| 2 |
| 1 |
| 3 |
∴bn=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(2)证明:由(1)知cn=an•bn=
| 2n-1 |
| 3n |
∴cn+1-cn=
| 2n+1 |
| 3n+1 |
| 2n-1 |
| 3n |
| 4(1-n) |
| 3n+1 |
∴cn+1<cn
(3)Tn=
| 1 |
| 3 |
| 3 |
| 32 |
| 2n-1 |
| 3n |
∴
| 1 |
| 3 |
| 1 |
| 32 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
两式相减可得:
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
| 2n-1 |
| 3n+1 |
| 3 |
| 2 |
| 3 |
| 2 |
| n+1 |
| 3n |
∴Tn=1-
| n+1 |
| 3n |
练习册系列答案
相关题目