题目内容
数列{an}中,a1=1,an+1=2an-n2+3n,(n∈N*).
(Ⅰ)试求λ、μ的值,使得数列{an+λn2+μn}为等比数列;
(Ⅱ)设数列{bn}满足:bn=
,Sn为数列{bn}的前n项和,证明:n≥2时,
<Sn<
.
(Ⅰ)试求λ、μ的值,使得数列{an+λn2+μn}为等比数列;
(Ⅱ)设数列{bn}满足:bn=
| 1 |
| an+n-2n-1 |
| 6n |
| (n+1)(2n+1) |
| 5 |
| 3 |
(Ⅰ)若{an+λn2+μn}为等比数列,
则存在q≠0,使an+1+λ(n+1)2+μ(n+1)=q(an+λn2+μn)对?n∈N*成立.
由已知:an+1=2an-n2+3n,代入上式,
整理得(q-2)an+(λq-λ+1)n2+(μq-2λ-μ-3)n-λ-μ=0①
∵①式对?n∈N*成立,
∴
解得
∴当λ=-1,μ=1时,数列{an+λn2+μn}是公比为2的等比数列;
(Ⅱ)证明:由(Ⅰ)得:an-n2+n=(a1-12+1)•2n-1,即an=2n-1+n2-n
所以bn=
=
∵bn=
<
=
-
n≥2时,sn=b1+b2+b3+…+bn<1+(
-
)+(
-
)+…+(
-
)=1+
-
<
(1)
现证:Sn>
(n≥2)
n≥2时,
n(n+1)(2n+1)sn=(12+22+32+…+n2)(
+
+
+…+
)>(1+1+1+…+1)2(n个1)=n2
∴Sn>
(2)
根据(1)(2)可知
>Sn>
对于n≥2,n∈N*都成立.
则存在q≠0,使an+1+λ(n+1)2+μ(n+1)=q(an+λn2+μn)对?n∈N*成立.
由已知:an+1=2an-n2+3n,代入上式,
整理得(q-2)an+(λq-λ+1)n2+(μq-2λ-μ-3)n-λ-μ=0①
∵①式对?n∈N*成立,
∴
|
解得
|
∴当λ=-1,μ=1时,数列{an+λn2+μn}是公比为2的等比数列;
(Ⅱ)证明:由(Ⅰ)得:an-n2+n=(a1-12+1)•2n-1,即an=2n-1+n2-n
所以bn=
| 1 |
| an+n-2n-1 |
| 1 |
| n2 |
∵bn=
| 1 |
| n2 |
| 1 | ||
n2-
|
| 1 | ||
n-
|
| 1 | ||
n+
|
n≥2时,sn=b1+b2+b3+…+bn<1+(
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
n-
|
| 1 | ||
n+
|
| 2 |
| 3 |
| 1 | ||
n+
|
| 5 |
| 3 |
现证:Sn>
| 6n |
| (n+1)(2n+1) |
n≥2时,
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
∴Sn>
| 6n |
| (n+1)(2n+1) |
根据(1)(2)可知
| 5 |
| 3 |
| 6n |
| (n+1)(2n+1) |
练习册系列答案
相关题目
数列{an}中,a1=
,an+an+1=
,n∈N*,则
(a1+a2+…+an)等于( )
| 1 |
| 5 |
| 6 |
| 5n+1 |
| lim |
| n→∞ |
A、
| ||
B、
| ||
C、
| ||
D、
|