题目内容
曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为______.
∵曲线y=x3+3x2+6x-1,
y'=3x2+6x+6=3(x+1)2+3≥3.
当x=-1时,y'min=3,此时斜率最小,即k=3
当x=-1时,y=-5.此切线过点(-1,-5)
∴切线方程为y+5=3(x+1),即3x-y-2=0,
故答案为3x-y-2=0;
y'=3x2+6x+6=3(x+1)2+3≥3.
当x=-1时,y'min=3,此时斜率最小,即k=3
当x=-1时,y=-5.此切线过点(-1,-5)
∴切线方程为y+5=3(x+1),即3x-y-2=0,
故答案为3x-y-2=0;
练习册系列答案
相关题目
若点P在曲线y=x3-3x2+(3-
)x+
上移动,经过点P的切线的倾斜角为α,则角α的取值范围是( )
| 3 |
| 3 |
| 4 |
A、[0,
| ||||||
B、[0,
| ||||||
C、[
| ||||||
D、[0,
|