题目内容
已知数列{an}满足a1=
,an+1=
an+
.求证:2<an<3.
| 5 |
| 2 |
| 1 |
| 2 |
| 2 |
| an |
用数学归纳法证明.
(1)当n=1时,a2=
×
+
=
,∴2<a2<3.
(2)假设2<ak<3,则1<
ak<
,
<
<1,
∵ak+1=
ak+
,
∴
<ak+1<
,
∵ak+1=
ak+
>2
=2,
∴2<ak+1<3.
由(1)、(2)知,2<an<3.
(1)当n=1时,a2=
| 1 |
| 2 |
| 5 |
| 2 |
| 2 | ||
|
| 46 |
| 20 |
(2)假设2<ak<3,则1<
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 2 |
| ak |
∵ak+1=
| 1 |
| 2 |
| 2 |
| ak |
∴
| 5 |
| 3 |
| 5 |
| 2 |
∵ak+1=
| 1 |
| 2 |
| 2 |
| ak |
|
∴2<ak+1<3.
由(1)、(2)知,2<an<3.
练习册系列答案
相关题目