题目内容
数列{an}的前n项和Sn,2Sn=(n+1)an,且a1=1(1)数列{an}的通项公式.(2)求{
| 1 | anan+1 |
分析:(1)当n≥2,利用2sn-2sn-1=(n+1)an-nan-1,可求得
=
,用累乘法可求得)数列{an}的通项公式;
(2)用裂项法即可求得{
}的前n项和Tn.
| an |
| an-1 |
| n |
| n-1 |
(2)用裂项法即可求得{
| 1 |
| anan+1 |
解答:解:(1)当n≥2,2sn-2sn-1=(n+1)an-nan-1,即2an=(n+1)an-nan-1
整理得:
=
,
∴an=
•
•
…
•a1
=
•
…
•1
=n.
(2)∵
=
=
-
,
∴Tn=
+
+…+
=1-
+
-
+…+
-
=1-
=
整理得:
| an |
| an-1 |
| n |
| n-1 |
∴an=
| an |
| an-1 |
| an-1 |
| an-2 |
| an-2 |
| an-3 |
| a2 |
| a1 |
=
| n |
| n-1 |
| n-1 |
| n-2 |
| 2 |
| 1 |
=n.
(2)∵
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查求数列通项与数列求和,求数列{an}的通项公式的方法是累乘法,用裂项法可求{
}的前n项和Tn.
| 1 |
| anan+1 |
练习册系列答案
相关题目