搜索
题目内容
设直线l是曲线
f(x)=
x
3
-
3
x+2
上的一条切线,则切线l斜率最小时对应的倾斜角为______.
试题答案
相关练习册答案
求导数可得
f′(x)=3
x
2
-
3
≥-
3
∴切线l斜率最小为-
3
∴对应的倾斜角为120°
故答案为:120°
练习册系列答案
超能学典暑假接力棒南京大学出版社系列答案
文涛书业假期作业快乐暑假系列答案
七彩假期期末大提升系列答案
一诺书业暑假作业快乐假期云南美术出版社系列答案
假日氧吧快乐假日精彩生活系列答案
超能学典口算题卡系列答案
学考单元练测卷系列答案
小学期末总冲刺系列答案
步步高系列衔接教材精华课堂暑假天天乐西安出版社系列答案
中考必考名著精讲细练系列答案
相关题目
已知函数f(x)=x
2
-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x
1
、x
2
(x
1
≠x
2
)处取得极值,求证:f(x
1
)+f(x
2
)<2.
设直线l是曲线
f(x)=
x
3
-
3
x+2
上的一条切线,则切线l斜率最小时对应的倾斜角为
120°
120°
.
已知函数f(x)=x
2
-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x
1
、x
2
(x
1
≠x
2
)处取得极值,求证:f(x
1
)+f(x
2
)<2.
已知函数f(x)=x
2
-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x
1
、x
2
(x
1
≠x
2
)处取得极值,求证:f(x
1
)+f(x
2
)<2.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案