题目内容
求和W=
+4
+7
+10
+…+(3n+1)
.
| C | 0n |
| C | 1n |
| C | 2n |
| C | 3n |
| C | nn |
∵an=3n+1为等差数列,∴a0+an=a1+an-1=…,
而
=
,(运用反序求和方法),
∵W=
+4
+7
+…+(3n-2)
+(3n+1)
①,
=(3n+1)
+(3n-2)
+(3n-5)
+…+4
+
∴W=(3n+1)
+(3n-2)
+(3n-5)
+…+4
+
②,
①+②得2W=(3n+2)(
+
+
+…+
)=(3n+2)×2n,
∴W=(3n+2)×2n-1.
而
| C | kn |
| C | n-kn |
∵W=
| C | 0n |
| C | 1n |
| C | 2n |
| C | n-1n |
| C | nn |
=(3n+1)
| C | nn |
| C | n-1n |
| C | n-2n |
| C | 1n |
| C | 0n |
∴W=(3n+1)
| C | 0n |
| C | 1n |
| C | n-2n |
| C | 1n |
| C | 0n |
①+②得2W=(3n+2)(
| C | 0n |
| C | 1n |
| C | 2n |
| C | nn |
∴W=(3n+2)×2n-1.
练习册系列答案
相关题目