题目内容

求和W=
C0n
+4
C1n
+7
C2n
+10
C3n
+…+(3n+1)
Cnn
∵an=3n+1为等差数列,∴a0+an=a1+an-1=…,
Ckn
=
Cn-kn
,(运用反序求和方法),
W=
C0n
+4
C1n
+7
C2n
+…+(3n-2)
Cn-1n
+(3n+1)
Cnn
①,
=(3n+1)
Cnn
+(3n-2)
Cn-1n
+(3n-5)
Cn-2n
+…+4
C1n
+
C0n

W=(3n+1)
C0n
+(3n-2)
C1n
+(3n-5)
Cn-2n
+…+4
C1n
+
C0n
②,
①+②得2W=(3n+2)(
C0n
+
C1n
+
C2n
+…+
Cnn
)=(3n+2)×2n

∴W=(3n+2)×2n-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网