题目内容

已知函数f(x)=alnx+ex(a>0),若f(3x)<f(x2+2),则实数x的取值范围是______.
函数的定义域为(0,+∞)
求导函数可得:f′(x)=
a
x
+ex
∵a>0,x>0
∴f′(x)>0
∴函数f(x)在(0,+∞)上为单调增函数
∴0<3x<x2+2,
x>0
x2-3x+2>0

∴0<x<1,或x>2
∴实数x的取值范围是(0,1)∪(2,+∞)
故答案为:(0,1)∪(2,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网