题目内容
已知数列{an}的前n项和Sn和通项an满足Sn=
(1-an).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=nan,求证:b1+b2+…+bn<
.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=nan,求证:b1+b2+…+bn<
| 3 |
| 4 |
(1)∵Sn=
(1-an),∴n≥2时,Sn-1=
(1-an-1).
两式相减可得an=
(an-1-an),∴
=
∵n=1时,a1=S1=
(1-a1),∴a1=
∴数列{an}是以
为首项,
为公比的等比数列
∴an=
•(
)n-1=(
)n;
(2)证明:bn=nan=n•(
)n
令Tn=b1+b2+…+bn,即Tn=1•
+2•(
)2+…+n•(
)n
∴
Tn=1•(
)2+2•(
)3+…+(n-1)•(
)n+n•(
)n+1
两式相减可得
Tn=1•
+1•(
)2+1•(
)3+…+1•(
)n-n•(
)n+1=
-n•(
)n+1=
-n•(
)n+1
∴Tn=
-
•(
)n+1,
∴Tn<
.
| 1 |
| 2 |
| 1 |
| 2 |
两式相减可得an=
| 1 |
| 2 |
| an |
| an-1 |
| 1 |
| 3 |
∵n=1时,a1=S1=
| 1 |
| 2 |
| 1 |
| 3 |
∴数列{an}是以
| 1 |
| 3 |
| 1 |
| 3 |
∴an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(2)证明:bn=nan=n•(
| 1 |
| 3 |
令Tn=b1+b2+…+bn,即Tn=1•
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
两式相减可得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| ||||
1-
|
| 1 |
| 3 |
1-(
| ||
| 2 |
| 1 |
| 3 |
∴Tn=
3[1-(
| ||
| 4 |
| 3n |
| 2 |
| 1 |
| 3 |
∴Tn<
| 3 |
| 4 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |