题目内容
已知数列{an}的前n项为和Sn,点(n,| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设cn=
| 3 |
| (2an-11)(2bn-1) |
| k |
| 57 |
分析:(1)根据点(n,
)在直线y=
x+
上可得到
=
n+
整理可得到Sn=
n2+
n.,再由n≥2时,an=Sn-Sn-1可得到an的表达式,再对n=1时进行验证即可得到数列{an}的通项公式;根据bn+2-2bn+1+bn=0可转化为bn+2-bn+1=bn+1-bn得到{bn}为等差数列,即可求出{bn}的通项公式.
(2)将(1)中的{an}、{bn}的通项公式代入到{cn}中然后进行裂项,可得到前n项和Tn=
[(1-
)+(
-
)+(
-
)++(
-
)],进而可确定Tn的表达式,然后作差可验证Tn单调递增,求出Tn的最小值,然后令最小值大于
求出k即可.
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
| 1 |
| 2 |
| 11 |
| 2 |
(2)将(1)中的{an}、{bn}的通项公式代入到{cn}中然后进行裂项,可得到前n项和Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| k |
| 57 |
解答:解:(Ⅰ)由题意,得
=
n+
,即Sn=
n2+
n.
故当n≥2时,an=Sn-Sn-1=(
n2+
n)-[
(n-1)2+
(n-1)]=n+5.
注意到n=1时,a1=S1=6,而当n=1,n+5=6,
所以,an=n+5(n∈N*).
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*),
所以{bn}为等差数列,于是
=153.
而b3=11,故b7=23,d=
=3,
因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*).
(Ⅱ)cn=
=
=
=
(
-
).
所以,Tn=c1+c2+…+cn=
[(1-
)+(
-
)+(
-
)++(
-
)]
=
(1-
)=
.
由于Tn+1-Tn=
-
=
>0,
因此Tn单调递增,故(Tn)min=
.
令
>
,得k<19,所以Kmax=18.
| Sn |
| n |
| 1 |
| 2 |
| 11 |
| 2 |
| 1 |
| 2 |
| 11 |
| 2 |
故当n≥2时,an=Sn-Sn-1=(
| 1 |
| 2 |
| 11 |
| 2 |
| 1 |
| 2 |
| 11 |
| 2 |
注意到n=1时,a1=S1=6,而当n=1,n+5=6,
所以,an=n+5(n∈N*).
又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*),
所以{bn}为等差数列,于是
| 9(b3+b7) |
| 2 |
而b3=11,故b7=23,d=
| 23-11 |
| 7-3 |
因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*).
(Ⅱ)cn=
| 3 |
| (2an-11)(2bn-1) |
| 3 |
| [2(n+5)-11][2(3n+2)-1] |
=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以,Tn=c1+c2+…+cn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
由于Tn+1-Tn=
| n+1 |
| 2n+3 |
| n |
| 2n+1 |
| 1 |
| (2n+3)(2n+1) |
因此Tn单调递增,故(Tn)min=
| 1 |
| 3 |
令
| 1 |
| 3 |
| k |
| 57 |
点评:本题主要考查数列的裂项法和求数列通项公式的方法.考查综合运用能力.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |