题目内容
在可导函数f(x)中,已知f(1)=2,f′(1)=-1,则
=( )
| lim |
| x→1 |
| 2x-f(x) |
| x-1 |
| A、1 | B、3 | C、5 | D、8 |
分析:由题设知
=
=-
+
=-f′(1)+2,由此能求出结果.
| lim |
| x→1 |
| 2x-f(x) |
| x-1 |
| lim |
| x→1 |
| 2x-[f(x)-2]-2 |
| x-1 |
| lim |
| x→1 |
| f(x-2) |
| x-1 |
| lim |
| x→1 |
| 2(x-1) |
| x-1 |
解答:解:∵f′(1)=
=
=-1
∴
=
=-
+
=-f′(1)+2=3
故选B.
| lim |
| x→1 |
| f(x)-f(1) |
| x-1 |
| lim |
| x→1 |
| f(x)-2 |
| x-1 |
∴
| lim |
| x→1 |
| 2x-f(x) |
| x-1 |
=
| lim |
| x→1 |
| 2x-[f(x)-2]-2 |
| x-1 |
=-
| lim |
| x→1 |
| f(x-2) |
| x-1 |
| lim |
| x→1 |
| 2(x-1) |
| x-1 |
=-f′(1)+2=3
故选B.
点评:本题考查极限的概念和应用,解题时要熟练掌握极限的概念,正确理解极限和导数间的相互关系.
练习册系列答案
相关题目