题目内容
若函数f(x)=2sinxcosx-2
sin2x+
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,
]时,求函数f(x)的最大值与最小值.
| 3 |
| 3 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,
| π |
| 2 |
(Ⅰ)由题意得f(x)=2sinxcosx+
(-2sin2x+1)=sin2x+
cos2x
=2sin(2x+
),
∴f(x)=2sin(2x+
),∴函数的周期是T=
=π,
(Ⅱ)∵x∈[0,
],∴
≤2x+
≤
则-
≤sin(2x+
)≤1,
∴f(x)max=2,f(x)min=-
.
| 3 |
| 3 |
=2sin(2x+
| π |
| 3 |
∴f(x)=2sin(2x+
| π |
| 3 |
| 2π |
| 2 |
(Ⅱ)∵x∈[0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
则-
| ||
| 2 |
| π |
| 3 |
∴f(x)max=2,f(x)min=-
| 3 |
练习册系列答案
相关题目