题目内容

已知f(x)=3ax+1-2a在[-1,1]上存在x0(x0≠±1),使得f(x0)=0,则a的取值范围是______.
由题意可得,函数f(x)=3ax+1-2a在区间(-1,1)上存在x0,使得f(x0)=0,由于函数是一个一次函数,
∴f(1)f(-1)<0,
即 (a+1)(1-5a)<0,即(a+1)(5a-1)>0,解得 a<-1,或 a>
1
5

故答案为(-∞,-1)∪(
1
5
,+∞).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网