题目内容
已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+
bn=1.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=an•bn,求{cn}的前n项和Sn.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)记cn=an•bn,求{cn}的前n项和Sn.
(1)设an的公差为d,则:a2=a1+d,a5=a1+4d,
∵a2=6,a5=18,∴
,∴a1=2,d=4.
∴an=2+4(n-1)=4n-2.
(2)当n=1时,b1=T1,由T1+
b1=1,得b1=
.
当n≥2时,∵Tn=1-
bn,Tn-1=1-
bn-1,
∴Tn-Tn-1=
(bn-1-bn),即bn=
(bn-1-bn)
∴bn=
bn-1.
bn是以
为首项,
为公比的等比数列.
(3)由(2)可知:bn=
•(
)n-1=2•(
)n.
∴cn=an•bn=(4n-2)•2•(
) n=(8n-4)•(
)n.
Sn=c1+c2+…cn-1+cn=4×
+12×(
)2+…+(8n-12)×(
)n-1+(8n-4)×(
)n
∴.
Sn=4×(
)2+12×(
)3+…+(8n-12)×(
)n+(8n-4)×(
)n+1
∴Sn-
Sn=
Sn=4×
+8×(
)2+8×(
)3+…+8×(
)n-(8n-4)×(
)n+1
=
+8×
-(8n-4)×(
)n+1
=
-4×(
)n-(8n-4)×(
)n+1
∴Sn=4-4(n+1)•(
)n
∵a2=6,a5=18,∴
|
∴an=2+4(n-1)=4n-2.
(2)当n=1时,b1=T1,由T1+
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,∵Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn-Tn-1=
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| 1 |
| 3 |
bn是以
| 2 |
| 3 |
| 1 |
| 3 |
(3)由(2)可知:bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴cn=an•bn=(4n-2)•2•(
| 1 |
| 3 |
| 1 |
| 3 |
Sn=c1+c2+…cn-1+cn=4×
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴Sn-
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| 4 |
| 3 |
(
| ||||
1-
|
| 1 |
| 3 |
=
| 8 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴Sn=4-4(n+1)•(
| 1 |
| 3 |
练习册系列答案
相关题目