题目内容
已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令cn=an+2n,求数列{cn}的前n项和Tn;
(3)令bn=3n•an(n∈N*),求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)令cn=an+2n,求数列{cn}的前n项和Tn;
(3)令bn=3n•an(n∈N*),求数列{bn}的前n项和Sn.
分析:(1)依题意,可求得该等差数列的公差,从而可求其通项公式;
(2)由(1)可知,cn=2n+2n,利用分组求和(分组后,一组为等差数列的求和,一组为等比数列的求和)即可;
(3)bn=3n•an=2n•3n,利用错位相减法求和即可求得数列{bn}的前n项和Sn..
(2)由(1)可知,cn=2n+2n,利用分组求和(分组后,一组为等差数列的求和,一组为等比数列的求和)即可;
(3)bn=3n•an=2n•3n,利用错位相减法求和即可求得数列{bn}的前n项和Sn..
解答:解:(1)∵数列{an}是等差数列,且a1=2,a1+a2+a3=12,
∴3a2=12,
∴a2=4,
∴公差d=a2-a1=4-2=2,
∴数列{an}的通项公式an=a1+(n-1)d=2+(n-1)×2=2n;
(2)∵cn=an+2n=2n+2n,
∴Tn=c1+c2+…+cn
=(a1+a2+a3+…+an)+(21+22+…+2n)
=
+
=2n+1+n2+n-2.
(3)∵bn=3n•an=2n•3n,
∴Sn=b1+b2+…+bn=2×31+4×32+…+2n•3n,①
∴3Sn=2×32+4×33+…+2(n-1)•3n+2n•3n+1,②
①-②得:
-2Sn=2×31+2×32+…+2×3n-2n•3n+1
=2×
-2n•3n+1
=(1-2n)•3n+1-3,
∴Sn=
•3n+1+
.
∴3a2=12,
∴a2=4,
∴公差d=a2-a1=4-2=2,
∴数列{an}的通项公式an=a1+(n-1)d=2+(n-1)×2=2n;
(2)∵cn=an+2n=2n+2n,
∴Tn=c1+c2+…+cn
=(a1+a2+a3+…+an)+(21+22+…+2n)
=
| (2+2n)n |
| 2 |
| 2(1-2n) |
| 1-2 |
=2n+1+n2+n-2.
(3)∵bn=3n•an=2n•3n,
∴Sn=b1+b2+…+bn=2×31+4×32+…+2n•3n,①
∴3Sn=2×32+4×33+…+2(n-1)•3n+2n•3n+1,②
①-②得:
-2Sn=2×31+2×32+…+2×3n-2n•3n+1
=2×
| 31(1-3n) |
| 1-3 |
=(1-2n)•3n+1-3,
∴Sn=
| 2n-1 |
| 2 |
| 3 |
| 2 |
点评:本题考查数列的求和,着重考查等差数列的通项公式,考查分组求和与错位相减法求和,属于中档题.
练习册系列答案
相关题目