题目内容
| wx |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
| ||
| 4 |
( I)求ω的值及函数f(x)的值域;
( II)若f(x0)=
| 4 |
| 5 |
| 3 |
| π |
| 12 |
| π |
| 3 |
| π |
| 6 |
分析:( I)利用两角和与差的三角函数公式可求得f(x)=
sin(ωx+
),由S△ABC=
|BC|=
π可求得|BC|,继而可求得ω,从而可得f(x)的解析式,可求函数f(x)的值域;
( II)由f(x0)=
可知sin(2x0+
)=
,由x0∈(
,
)可求得cos(2x0+
),最后利用两角和的正弦即可求得f(x0+
)的值.
| 3 |
| π |
| 3 |
| 1 |
| 2 |
| 3 |
| ||
| 4 |
( II)由f(x0)=
4
| ||
| 5 |
| π |
| 3 |
| 4 |
| 5 |
| π |
| 12 |
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
解答:( I)∵f(x)=3cos2
+
sin?x-
=
cosωx+
sin?x
=
sin(ωx+
)(ω>0)
又S△ABC=
|BC|=
π,
∴|BC|=
=
,则ω=2.
∴f(x)=
sin(2x+
),值域是[-
,
]; 5′
( II)由f(x0)=
得sin(2x0+
)=
,
∵x0∈(
,
),
∴
<2x0+
<π,
∴cos(2x0+
)=-
则f(x0+
)=
sin[2(x0+
)+
]
=
sin[(2x0+
)+
]
=
[sin(2x0+
)cos
+cos(2x0+
)sin
]
=
.9′
| ωx |
| 2 |
| ||
| 2 |
| 3 |
| 2 |
=
| 3 |
| 2 |
| ||
| 2 |
=
| 3 |
| π |
| 3 |
又S△ABC=
| 1 |
| 2 |
| 3 |
| ||
| 4 |
∴|BC|=
| π |
| 2 |
| 2π |
| ω |
∴f(x)=
| 3 |
| π |
| 3 |
| 3 |
| 3 |
( II)由f(x0)=
4
| ||
| 5 |
| π |
| 3 |
| 4 |
| 5 |
∵x0∈(
| π |
| 12 |
| π |
| 3 |
∴
| π |
| 2 |
| π |
| 3 |
∴cos(2x0+
| π |
| 3 |
| 3 |
| 5 |
则f(x0+
| π |
| 6 |
| 3 |
| π |
| 6 |
| π |
| 3 |
=
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
4
| ||
| 10 |
点评:本题考查两角和与差的三角函数,考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得f(x)的解析式是关键,属于难题.
练习册系列答案
相关题目
已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}( )
| A、是等比数列 | B、是等差数列 | C、从第2项起是等比数列 | D、是常数列 |