题目内容
已知x>0,y>0,且x+y=1,
(1)求
+
的最小值;
(2)求
+
的最大值.
(1)求
| 8 |
| x |
| 2 |
| y |
(2)求
| 2x+1 |
| 2y+1 |
分析:(1)
+
=(
+
)(x+y),展开用基本不等式即可求出最小值;
(2)可用结论
+
≤
求得其最大值.
| 8 |
| x |
| 2 |
| y |
| 8 |
| x |
| 2 |
| y |
(2)可用结论
| a |
| b |
| 2(a+b) |
解答:解:(1)
+
=(
+
)(x+y)=10+
+
≥10+2
=18
当且仅当
=
时,即x=
,y=
时有最小值18
(2)
+
≤
=2
,(
+
≤
)
当且仅当2x+1=2y+1即x=y=
时取最大值2
.
| 8 |
| x |
| 2 |
| y |
| 8 |
| x |
| 2 |
| y |
| 8y |
| x |
| 2x |
| y |
|
当且仅当
| 8y |
| x |
| 2x |
| y |
| 2 |
| 3 |
| 1 |
| 3 |
(2)
| 2x+1 |
| 2y+1 |
| 2(2x+1+2y+1) |
| 2 |
| a |
| b |
| 2(a+b) |
当且仅当2x+1=2y+1即x=y=
| 1 |
| 2 |
| 2 |
点评:本题考查了运用基本不等式求最值问题,要注意使用条件:一正、二定、三相等,缺一不可.本题第(1)问巧妙运用“1”进行代换,技巧性较强,注意体会.
练习册系列答案
相关题目
(2007
宁夏,7)已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则[
]|
A .0 |
B .1 |
C .2 |
D .4 |