题目内容
(2008•湖北模拟)已知数列{an}的前n项和为{Sn},又有数列{bn}满足关系b1=a1,对n∈N*,有an+Sn=n,bn+1=an+1-an
(1)求证:{bn}是等比数列,并写出它的通项公式;
(2)是否存在常数c,使得数列{Sn+cn+1}为等比数列?若存在,求出c的值;若不存在,说明理由.
(1)求证:{bn}是等比数列,并写出它的通项公式;
(2)是否存在常数c,使得数列{Sn+cn+1}为等比数列?若存在,求出c的值;若不存在,说明理由.
分析:(1)由an+Sn=n,可求得2an+1=an+1,在an+Sn=n中令n=1可求得a1,即b1,由
=
,可证明:{bn}是等比数列,从而可得其通项公式;
(2)由可求得:an+bn=an+an-an-1=2an-an-1,2an+1=an+1,可求得an+bn=1⇒an=1-(
)n,可求得Sn -n+1=(
)n,问题即可解决.
| bn+1 |
| bn |
| 1 |
| 2 |
(2)由可求得:an+bn=an+an-an-1=2an-an-1,2an+1=an+1,可求得an+bn=1⇒an=1-(
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:(1)由an+Sn=n⇒a1+S1=1⇒a1=
,又
(3分)
∴
=
=
=
,
∴数列{bn}为等比数列,且bn=(
)n(6分)
(2)an+bn=an+an-an-1=2an-an-1,∴an+bn=1⇒an=1-(
)n(8分)
∴Sn=n-an=n-1+(
)n⇒Sn-n+1=(
)n(10分)
依题意,存在c=-1,使得数列{Sn+cn+1}为等比数列. (12分)
| 1 |
| 2 |
|
∴
| bn+1 |
| bn |
| an+1-an |
| an-an-1 |
| ||
| an-(2an-1) |
| 1 |
| 2 |
∴数列{bn}为等比数列,且bn=(
| 1 |
| 2 |
(2)an+bn=an+an-an-1=2an-an-1,∴an+bn=1⇒an=1-(
| 1 |
| 2 |
∴Sn=n-an=n-1+(
| 1 |
| 2 |
| 1 |
| 2 |
依题意,存在c=-1,使得数列{Sn+cn+1}为等比数列. (12分)
点评:本题考查等比数列的通项公式,着重考查学生综合应用与转化的能力,属于难题.
练习册系列答案
相关题目