ÌâÄ¿ÄÚÈÝ
£¨1£©Èô¡÷ABDµÄÃæ»ýΪ4£¬ÇóµãBµÄ×ø±ê£»
£¨2£©ÇóÖ¤£ºDC¡ÎAB£»
£¨3£©ËıßÐÎABCDÄÜ·ñΪÁâÐΣ¿Èç¹ûÄÜ£¬ÇëÇó³öËıßÐÎABCDΪÁâÐÎʱ£¬Ö±ÏßABµÄº¯Êý½âÎöʽ£»Èç¹û²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒ⣬µÃC£¨1£¬0£©£¬Éè³öµãD×ø±êºÍ·´±ÈÀýº¯Êý½âÎöʽ£¬½áºÏµãA£¨1£¬4£©ÔÚº¯ÊýͼÏóÉÏ£¬µÃµ½·´±ÈÀýº¯Êý½âÎöʽ£¬´Ó¶øµÃµ½ab=4£¬ÔÙ¸ù¾Ý¡÷ABDµÄÃæ»ýΪ4£¬ÁÐʽ»¯¼òµÃ4a-ab=4a-4=8£¬×îºóÁª½â·½³Ì×飬¿ÉµÃµãBµÄ×ø±êΪ£¨3£¬
£©£®
£¨2£©¸ù¾Ý¾¹ýÁ½µãÖ±ÏßбÂʵĹ«Ê½£¬½áºÏC¡¢DµÄ×ø±ê£¬µÃµ½Ö±ÏßDCµÄбÂÊΪ-b£®Í¬Àí¸ù¾ÝA¡¢BÁ½µãµÄ×ø±ê£¬µÃµ½Ö±ÏßABµÄбÂʹØÓÚa¡¢bµÄʽ×Ó£®ÔÙ¸ù¾Ý·´±ÈÀý½âÎöʽ£¬ÓÐab=4£¬´úÈ뻯¼ò¿ÉµÃKAB=
=-b£¬Ö±ÏßABÓëÖ±ÏßDCµÄбÂÊÏàµÈ£¬Òò´ËµÃµ½DC¡ÎAB£®
£¨3£©¸ù¾ÝËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±£¬¿ÉµÃÖ»ÒªËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬Ëü¾ÍÊÇÒ»¸öÁâÐΣ®ÔÙÓÉ£¨2£©ÖªDC¡ÎAB£¬ËùÒÔÖ»ÐèDC=AB£¬¼´¿É£®½ÓÏÂÀ´ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ£¬¸ù¾ÝCD=ABÁгö¹ØÓÚa¡¢bµÄµÈʽ£¬½áºÏab=4£¬½âÖ®µÃa=b=2£®´Ó¶øµÃµ½µ±Bµã×ø±êΪ£¨2£¬2£©Ê±£¬ËıßÐÎABCDΪÁâÐΣ®×îºóÓþ¹ýÁ½µãµÄÖ±ÏßбÂʵĹ«Ê½£¬µÃ³ö´ËʱֱÏßABµÄбÂÊ£¬´Ó¶ø¿ÉµÃÖ±ÏßAB·½³Ì£®
| 4 |
| 3 |
£¨2£©¸ù¾Ý¾¹ýÁ½µãÖ±ÏßбÂʵĹ«Ê½£¬½áºÏC¡¢DµÄ×ø±ê£¬µÃµ½Ö±ÏßDCµÄбÂÊΪ-b£®Í¬Àí¸ù¾ÝA¡¢BÁ½µãµÄ×ø±ê£¬µÃµ½Ö±ÏßABµÄбÂʹØÓÚa¡¢bµÄʽ×Ó£®ÔÙ¸ù¾Ý·´±ÈÀý½âÎöʽ£¬ÓÐab=4£¬´úÈ뻯¼ò¿ÉµÃKAB=
| b-4 |
| a-1 |
£¨3£©¸ù¾ÝËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±£¬¿ÉµÃÖ»ÒªËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬Ëü¾ÍÊÇÒ»¸öÁâÐΣ®ÔÙÓÉ£¨2£©ÖªDC¡ÎAB£¬ËùÒÔÖ»ÐèDC=AB£¬¼´¿É£®½ÓÏÂÀ´ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ£¬¸ù¾ÝCD=ABÁгö¹ØÓÚa¡¢bµÄµÈʽ£¬½áºÏab=4£¬½âÖ®µÃa=b=2£®´Ó¶øµÃµ½µ±Bµã×ø±êΪ£¨2£¬2£©Ê±£¬ËıßÐÎABCDΪÁâÐΣ®×îºóÓþ¹ýÁ½µãµÄÖ±ÏßбÂʵĹ«Ê½£¬µÃ³ö´ËʱֱÏßABµÄбÂÊ£¬´Ó¶ø¿ÉµÃÖ±ÏßAB·½³Ì£®
½â´ð£º
½â£º£¨1£©¸ù¾ÝÌâÒ⣬µÃC£¨1£¬0£©£¬ÉèµãD£¨0£¬b£©£¬·´±ÈÀýº¯Êý½âÎöʽΪy=
¡ßA£¨1£¬4£©ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡à4=
£¬¼´m=4£¬
ÔÙ¸ù¾ÝµãB£¨a£¬b£©ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬¿ÉµÃab=4£¬
¡àS¡÷ABD=0.5*a£¨4-b£©=4£¬¼´4a-ab=4a-4=8£¬
¡àÁª½â·½³Ì×éµÃ£ºa=3£¬b=
£¬¿ÉµÃµãBµÄ×ø±êΪ£¨3£¬
£©£®------£¨4·Ö£©
£¨2£©C£¨1£¬0£©£¬ÉèD£¨0£¬b£©£¬
¡àÖ±ÏßDCµÄбÂÊΪKDC=
=-b£®
ͬÀí£¬¸ù¾ÝA£¨1£¬4£©£¬£¨a£¬b£©£¬¿ÉµÃÖ±ÏßABµÄбÂÊΪKAB=
£®
¡ßµãBÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÓÐab=4
¡àKAB=
=
=-b=KDC
ËùÒÔDC¡ÎAB£®------£¨4·Ö£©
£¨3£©ËıßÐÎABCDÄÜΪÁâÐΣ®
¡ßËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±£¬
¡àµ±ËıßÐÎABCDÊÇÆ½ÐÐËıßÐÎʱ£¬ËıßÐÎABCD¾ÍÊÇÁâÐΣ®
ÓÉ£¨2£©µÃDC¡ÎAB£¬ËùÒÔÖ»ÐèDC=AB£¬¼´¿É£®
Éè
=
£¬
½áºÏab=4£¬¿ÉµÃa=b=2£®
¡àµãΪB£¨2£¬2£©Ê±£¬ËıßÐÎABCDΪÁâÐÎʱ£¬
´ËʱֱÏßABµÄбÂÊΪKAB=
=-2£¬
ÓÉÖ±Ïߵĵãбʽ·½³Ì£¬µÃAB·½³ÌΪy-2=-2£¨x-2£©£¬»¯¼òµÃËùÇóº¯Êý½âÎöʽΪy=-2x+6£»------£¨4·Ö£©
| m |
| x |
¡ßA£¨1£¬4£©ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬
¡à4=
| m |
| 1 |
ÔÙ¸ù¾ÝµãB£¨a£¬b£©ÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬¿ÉµÃab=4£¬
¡àS¡÷ABD=0.5*a£¨4-b£©=4£¬¼´4a-ab=4a-4=8£¬
¡àÁª½â·½³Ì×éµÃ£ºa=3£¬b=
| 4 |
| 3 |
| 4 |
| 3 |
£¨2£©C£¨1£¬0£©£¬ÉèD£¨0£¬b£©£¬
¡àÖ±ÏßDCµÄбÂÊΪKDC=
| b-0 |
| 0-1 |
ͬÀí£¬¸ù¾ÝA£¨1£¬4£©£¬£¨a£¬b£©£¬¿ÉµÃÖ±ÏßABµÄбÂÊΪKAB=
| b-4 |
| a-1 |
¡ßµãBÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÓÐab=4
¡àKAB=
| b-4 |
| a-1 |
| b-ab |
| a-1 |
ËùÒÔDC¡ÎAB£®------£¨4·Ö£©
£¨3£©ËıßÐÎABCDÄÜΪÁâÐΣ®
¡ßËıßÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±£¬
¡àµ±ËıßÐÎABCDÊÇÆ½ÐÐËıßÐÎʱ£¬ËıßÐÎABCD¾ÍÊÇÁâÐΣ®
ÓÉ£¨2£©µÃDC¡ÎAB£¬ËùÒÔÖ»ÐèDC=AB£¬¼´¿É£®
Éè
| (1-a)2+(4-b)2 |
| 12+b2 |
½áºÏab=4£¬¿ÉµÃa=b=2£®
¡àµãΪB£¨2£¬2£©Ê±£¬ËıßÐÎABCDΪÁâÐÎʱ£¬
´ËʱֱÏßABµÄбÂÊΪKAB=
| 2-4 |
| 2-1 |
ÓÉÖ±Ïߵĵãбʽ·½³Ì£¬µÃAB·½³ÌΪy-2=-2£¨x-2£©£¬»¯¼òµÃËùÇóº¯Êý½âÎöʽΪy=-2x+6£»------£¨4·Ö£©
µãÆÀ£º±¾ÌâÒÔ·´±ÈÀýº¯ÊýͼÏóÎªÔØÌ壬һ·½Ãæ¸ù¾ÝÈý½ÇÐεÄÃæ»ýÇóµãµÄ×ø±ê£¬ÁíÒ»·½ÃæÖ¤Ã÷Ö±Ïß»¥ÏàÆ½ÐС¢ÅжÏËıßÐÎÐÎ×´£¬×ÅÖØ¿¼²éÁËÖ±ÏßµÄбÂʺÍÖ±Ïߵķ½³Ì¡¢Á½µãµÄ¾àÀ빫ʽºÍ×ø±êϵÄÚÈý½ÇÐÎÃæ»ýÇ󷨵È֪ʶµã£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿