题目内容

已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
分析:(1)令n=1,可得a1=
1
2
,由an+Sn=n及an+1+Sn+1=n+1,两式相减可得2(an+1-1)=an-1,即2bn+1=bn.由等比数列的通项公式可得;
(2)可知an=-(
1
2
n+1,代入化简可得cn的表达式.
解答:解:(1)由a1+S1=1及a1=S1得a1=
1
2

又由an+Sn=n及an+1+Sn+1=n+1,
得an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn
∴数列{bn}是以b1=a1-1=-
1
2
为首项,
1
2
为公比的等比数列.
(2):由(1)知bn=-
1
2
•(
1
2
n-1=-(
1
2
n
∴an=-(
1
2
n+1.
∴cn=-(
1
2
n+1-[-(
1
2
n-1+1]
=(
1
2
n-1-(
1
2
n=(
1
2
n-1(1-
1
2
)=(
1
2
n(n≥2).
又c1=a1=
1
2
也适合上式,
∴cn=(
1
2
n
点评:本题考查等比关系的确定,涉及数列的递推公式,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网