题目内容
已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
(1)设bn=an-1,求证:数列{bn}是等比数列;
(2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
分析:(1)令n=1,可得a1=
,由an+Sn=n及an+1+Sn+1=n+1,两式相减可得2(an+1-1)=an-1,即2bn+1=bn.由等比数列的通项公式可得;
(2)可知an=-(
)n+1,代入化简可得cn的表达式.
| 1 |
| 2 |
(2)可知an=-(
| 1 |
| 2 |
解答:解:(1)由a1+S1=1及a1=S1得a1=
.
又由an+Sn=n及an+1+Sn+1=n+1,
得an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-
为首项,
为公比的等比数列.
(2):由(1)知bn=-
•(
)n-1=-(
)n,
∴an=-(
)n+1.
∴cn=-(
)n+1-[-(
)n-1+1]
=(
)n-1-(
)n=(
)n-1(1-
)=(
)n(n≥2).
又c1=a1=
也适合上式,
∴cn=(
)n.
| 1 |
| 2 |
又由an+Sn=n及an+1+Sn+1=n+1,
得an+1-an+an+1=1,∴2an+1=an+1.
∴2(an+1-1)=an-1,即2bn+1=bn.
∴数列{bn}是以b1=a1-1=-
| 1 |
| 2 |
| 1 |
| 2 |
(2):由(1)知bn=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=-(
| 1 |
| 2 |
∴cn=-(
| 1 |
| 2 |
| 1 |
| 2 |
=(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
又c1=a1=
| 1 |
| 2 |
∴cn=(
| 1 |
| 2 |
点评:本题考查等比关系的确定,涉及数列的递推公式,属中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |