题目内容

定义在R上的函数f(x)=Asin(ωx+φ),ω,φ均为实数,则“f(0)•f(1)<0”是“f(x)在(0,1)内有零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既非充分又非必要条件
∵定义在R上的函数f(x)=Asin(ωx+φ),ω,φ均为实数,则“f(0)•f(1)<0”,
f(x)是连续的三角函数,根据零点定理可得“f(x)在(0,1)内至少有一个零点”,
若“f(x)在(0,1)内有零点”可以取y=3sin6x,
若x=
π
6
<1,可得y=3sin
π
6
=0,x=
π
3
<1,y=0,f(x)在(0,1)内有零点,
∴f(0)=0,推不出“f(0)•f(1)<0”,
∴“f(0)•f(1)<0”是“f(x)在(0,1)内有零点”的充分不必要条件,
故选A;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网