题目内容
已知命题p:方程
+
=1所表示的曲线为焦点在x轴上的椭圆;命题q:实数a满足不等式t2-(a-1)t-a<0.
(1)若命题p为真,求实数a的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.
| x2 |
| 3-t |
| y2 |
| t+1 |
(1)若命题p为真,求实数a的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.
解(1)∵方程
+
=1所表示的曲线为焦点在x轴上的椭圆
∴
,解之得:-1<t<1…(6分)
(2)∵命题q:实数满足不等式t2-(a-1)t-a<0,即(t+1)(t-a)<0.
∴命题q为真命题,当a>-1时,得到t∈(-1,a);当a<-1时,命题q为真命题得到t∈(a,-1)
∵命题P是命题q的充分不必要条件
∴集合{t|-1<t<1}是不等式t2-(a-1)t-a<0解集的真子集…(9分)
由此可得a>-1且(-1,1)
(-1,a)
解之得:a>1…(12分)
| x2 |
| 3-t |
| y2 |
| t+1 |
∴
|
(2)∵命题q:实数满足不等式t2-(a-1)t-a<0,即(t+1)(t-a)<0.
∴命题q为真命题,当a>-1时,得到t∈(-1,a);当a<-1时,命题q为真命题得到t∈(a,-1)
∵命题P是命题q的充分不必要条件
∴集合{t|-1<t<1}是不等式t2-(a-1)t-a<0解集的真子集…(9分)
由此可得a>-1且(-1,1)
| ? |
| ≠ |
解之得:a>1…(12分)
练习册系列答案
相关题目