题目内容
(2012•安庆二模)已知实数,x,y满足约束条件
,则z=2x+y的最小值是
|
-1
-1
.分析:作出不等式组表示的平面区域,由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小,结合图象可求z的最小值
解答:
解:作出不等式组表示的平面区域,如图所示的阴影部分
由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小
由题意可得,当y=-2x+z经过点A时,z最小
由
可得A(-1,1),此时Z=-1
故答案为:-1
由z=2x+y可得y=-2x+z,则z表示直线y=-2x+z在y轴上的截距,截距越小,z越小
由题意可得,当y=-2x+z经过点A时,z最小
由
|
故答案为:-1
点评:本题主要考查了线性目标函数在线性约束条件 下的最值的求解,解题的关键是明确z的几何意义
练习册系列答案
相关题目