题目内容
已知函数f(x)=2sinxcosx+2
cos2 x-
+2
(1)求函数f(x)的对称轴方程;
(2)当x∈(0,
)时,若函数g(x)=f(x)+m有零点,求m的范围;
(3)若f(x0) =
,x0∈(
,
),求sin(2x0)的值.
| 3 |
| 3 |
(1)求函数f(x)的对称轴方程;
(2)当x∈(0,
| π |
| 2 |
(3)若f(x0) =
| 2 |
| 5 |
| π |
| 4 |
| π |
| 2 |
(1)∵f(x)=sin2x+
cos2x+2=2sin(2x+
)+2(3分)
令2x+
=
+kπ可得:x=
+
,k∈Z,
∴对称轴方程为:x=
+
,k∈Z,.(4分)
(2)∵x∈(0,
) 2x+
∈(
,
)
∴sin(2x+
)∈(-
,1]
∴2sin(2x+
)+2∈(-
+2,4](7分)
∵函数g(x)=f(x)+m有零点,即f(x)=-m有解.(8分)
即-m∈(-
+2,4],m∈[-4,
-2).(9分)
(3)f(x0)=
即2sin(2x0+
)+2=
+2=
即sin(2x0+
)=-
=-
(10分)
∵x0∈(
,
)
∴2x0+
∈(
,
)
又∵sin(2x0+
)=-
,
∴2x0+
∈(π,
)(11分)
∴cos(2x0+
)=-
(12分)
∴sin2x0=sin[(2x0+
)-
](13分)
=sin(2x0+
)cos
-cos(2x0+
)sin
=(-
)×
-(-
)×
=
(15分)
| 3 |
| π |
| 3 |
令2x+
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| kπ |
| 2 |
∴对称轴方程为:x=
| π |
| 12 |
| kπ |
| 2 |
(2)∵x∈(0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴sin(2x+
| π |
| 3 |
| ||
| 2 |
∴2sin(2x+
| π |
| 3 |
| 3 |
∵函数g(x)=f(x)+m有零点,即f(x)=-m有解.(8分)
即-m∈(-
| 3 |
| 3 |
(3)f(x0)=
| 2 |
| 5 |
| π |
| 3 |
| 2 |
| 5 |
| 2 |
| 5 |
| π |
| 3 |
| 4 |
| 5 |
| 4 |
| 5 |
∵x0∈(
| π |
| 4 |
| π |
| 2 |
∴2x0+
| π |
| 3 |
| 5π |
| 6 |
| 4π |
| 3 |
又∵sin(2x0+
| π |
| 3 |
| 4 |
| 5 |
∴2x0+
| π |
| 3 |
| 4π |
| 3 |
∴cos(2x0+
| π |
| 3 |
| 3 |
| 5 |
∴sin2x0=sin[(2x0+
| π |
| 3 |
| π |
| 3 |
=sin(2x0+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=(-
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
| ||
| 2 |
=
3
| ||
| 10 |
练习册系列答案
相关题目