题目内容
已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-3)<f(-1)的x的集合是______.
∵偶函数f(x)在区间[0,+∞)上单调递增,
∴f(x)在(-∞,0)上单调递减
f(2x-3)<f(-1)
∴|2x-3|<1
∴-1<2x-3<1
∴2<2x<4
∴1<x<2
故答案为:(1,2)
∴f(x)在(-∞,0)上单调递减
f(2x-3)<f(-1)
∴|2x-3|<1
∴-1<2x-3<1
∴2<2x<4
∴1<x<2
故答案为:(1,2)
练习册系列答案
相关题目
已知偶函数f(x)在区间[0,π]上单调递增,那么下列关系成立的是( )
A、f(-π)>f(-2)>f(
| ||
B、f(-π)>f(-
| ||
C、f(-2)>f(-
| ||
D、f(-
|