题目内容

(2011•浦东新区三模)如图,用一平面去截球O,所得截面面积为16π,球心O到截面的距离为3cm,O1为截面小圆圆心,AB为截面小圆的直径.
(1)计算球O的表面积;
(2)若C是截面小圆上一点,∠ABC=30°,M、N分别是线段AO1和OO1的中点,求异面直线AC与MN所成的角(结果用反三角函数表示).
分析:(1)求出小圆的半径,然后利用球心到该截面的距离为3cm,小圆的半径,通过勾股定理求出球的半径,即可求出球的表面积.
(2)由MN∥OA得,∠OAC为异面直线AC与MN所成的角(或补角),连接OC,然后利用余弦定理求出此角的余弦值,最后利用反三角表示出此角即可.
解答:解:(1)连接OA,由题意得,截面小圆半径为4cm(2分)
在Rt△OAO1中,O1A=4,OO1=3,的由勾股定理知,AO=5,(4分)
所以,球O的表面积为:4π•25=100π(cm2).(7分)
(2)由MN∥OA得,∠OAC为异面直线AC与MN所成的角(或补角).(9分)
在Rt△ABC中,AB=8,∠ABC=30°,则AC=4,(10分)
连接OC,在△OAC中,OA=OC=5,由余弦定理知:cos∠OAC=
AC2+OA2-OC2
2OA•AC
=
42+52-52
2×4×5
=
2
5
,(12分)
故异面直线AC与MN所成的角为arccos
2
5
.(14分)
点评:本题主要考查了球的表面积,以及异面直线及其所成角和余弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网