题目内容
(本小题满分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,侧面ABB1A1是菱形,且
,M是A1B1的中点,![]()
(1)求证:
平面ABC;
(2)求二面角A1—BB1—C的余弦值。
![]()
【答案】
(Ⅰ)∵侧面
是菱形且
∴
为正三角形
又∵点
为
的中点
∴
∵
∥
∴![]()
由已知
∴
平面
(4分)
(Ⅱ)(法一)连接
,作
于
,连接![]()
![]()
由(Ⅰ)知
面
,∴![]()
又
∴
面
∴![]()
∴
为所求二面角的平面角
(8分)
设菱形
边长为2,则![]()
在
中,由
知:![]()
在
中,
∴![]()
即二面角
的余弦值为
(12分)
(法二)如图建立空间直角坐标系
设菱形
边长为2
得
,![]()
,![]()
则
,![]()
,![]()
设面
的法向量
,由
,
得
,令
,得
(8分)
设面
的法向量
,
由
,
得
,令
,得
(10分)
得
.
又二面角
为锐角,所以所求二面角的余弦值为
(12分)
【解析】略
练习册系列答案
相关题目