题目内容
设z的共轭复数是
,若z+
=4,z•
=8,则
等于______.
| . |
| z |
| . |
| z |
| . |
| z |
| ||
| z |
设z=x+yi,其中x、y∈R,则
=x-yi,∴x+yi+x-yi=4,(x+yi )(x-yi )=8.
即 2x=4,x2+y2=8,解得 x=2,y=±2.
∴z=2+2i,或 z=2-2i.
当z=2+2i时,
=
=
=
=-i,
当z=2-2i时,
=
=
=
=i,
故答案为±i.
| . |
| z |
即 2x=4,x2+y2=8,解得 x=2,y=±2.
∴z=2+2i,或 z=2-2i.
当z=2+2i时,
| ||
| z |
| 2-2i |
| 2+2i |
| (2-2i)2 |
| (2+2i)(2-2i) |
| -8i |
| 8 |
当z=2-2i时,
| ||
| z |
| 2+2i |
| 2-2i |
| (2+2i)2 |
| (2+2i)(2-2i) |
| 8i |
| 8 |
故答案为±i.
练习册系列答案
相关题目
设z的共轭复数是
,若z+
=4,z•
=8,则
等于( )
. |
| z |
. |
| z |
. |
| z |
| ||
| z |
| A、i | B、-i | C、±1 | D、±i |