题目内容

已知公差为d的等差数列an,0<a1
π
2
,0<d<
π
2
,其前n项和为Sn,若sin(a1+a3)=sina2,cos(a3-a1)=cosa2
(1)求数列an的通项公式;
(2)设bn=
Sn
(n+1)•2n-1
,求数列bn的前n项和Tn
(1)∵sin(a1+a3)=sina2,∴sin2a2=2sina2cosa2=sina2,∴sina2(2cosa2-1)=0,
∵0<a1
π
2
,0<d<
π
2
,∴0<a2<π,∴sina2≠0,∴cosa2=
1
2
,∴a2=
π
3

∵cos(a3-a1)=cosa2,∴cos2d=cos
π
3
,∴d=
π
6
,∴a1=
π
6
,∴an=
π
6
+
(n-1)•
π
6
=
6
,∴数列an的通项公式为an=
6

(2)∵Sn=
n(a1+an)
2
=
n(n+1)π
12
,∴bn=
Sn
(n+1)•2n-1
=
πn
6•2n
=
π
6
n
2n

Tn=
π
6
(
1
2
+2•
1
22
+3•
1
23
+4•
1
24
++n•
1
2n
)
①,
1
2
Tn=
π
6
[
1
22
+2•
1
23
+3•
1
24
+4•
1
25
++(n-1)•
1
2n
+n•
1
2n+1
]
②,
①-②得
1
2
Tn=
π
6
(
1
2
+
1
22
+
1
23
+
1
24
++
1
2n
-n•
1
2n+1
)
=
π
12
(1-
1
2n
)
1-
1
2
-
6
1
2n+1
=
π
6
(1-
1
2n
)-
6
1
2n+1

Tn=
π
3
-
(n+2)π
3•2n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网