题目内容
已知公差为d的等差数列an,0<a1<
,0<d<
,其前n项和为Sn,若sin(a1+a3)=sina2,cos(a3-a1)=cosa2.
(1)求数列an的通项公式;
(2)设bn=
,求数列bn的前n项和Tn.
| π |
| 2 |
| π |
| 2 |
(1)求数列an的通项公式;
(2)设bn=
| Sn |
| (n+1)•2n-1 |
(1)∵sin(a1+a3)=sina2,∴sin2a2=2sina2cosa2=sina2,∴sina2(2cosa2-1)=0,
∵0<a1<
,0<d<
,∴0<a2<π,∴sina2≠0,∴cosa2=
,∴a2=
,
∵cos(a3-a1)=cosa2,∴cos2d=cos
,∴d=
,∴a1=
,∴an=
+(n-1)•
=
,∴数列an的通项公式为an=
.
(2)∵Sn=
=
,∴bn=
=
=
•
,
∴Tn=
(
+2•
+3•
+4•
++n•
)①,
Tn=
[
+2•
+3•
+4•
++(n-1)•
+n•
]②,
①-②得
Tn=
(
+
+
+
++
-n•
)=
-
•
=
(1-
)-
•
,
∴Tn=
-
.
∵0<a1<
| π |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| π |
| 3 |
∵cos(a3-a1)=cosa2,∴cos2d=cos
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| nπ |
| 6 |
| nπ |
| 6 |
(2)∵Sn=
| n(a1+an) |
| 2 |
| n(n+1)π |
| 12 |
| Sn |
| (n+1)•2n-1 |
| πn |
| 6•2n |
| π |
| 6 |
| n |
| 2n |
∴Tn=
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 25 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
①-②得
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
| ||||
1-
|
| nπ |
| 6 |
| 1 |
| 2n+1 |
| π |
| 6 |
| 1 |
| 2n |
| nπ |
| 6 |
| 1 |
| 2n+1 |
∴Tn=
| π |
| 3 |
| (n+2)π |
| 3•2n+1 |
练习册系列答案
相关题目