题目内容
已知数列{an}满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
解析:由an=a1+2a2+3a3+…+(n-1)an-1(n≥2),得
nan+an=a1+2a2+3a3+…+(n-1)an-1+nan(n≥2),
即(n+1)·an=an+1(n≥2).
又a1=1,∴a2=1,
=1,
=3,
=4,…,
=n.
累积得an=
(n≥2).
答案:![]()
练习册系列答案
相关题目
题目内容
已知数列{an}满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
解析:由an=a1+2a2+3a3+…+(n-1)an-1(n≥2),得
nan+an=a1+2a2+3a3+…+(n-1)an-1+nan(n≥2),
即(n+1)·an=an+1(n≥2).
又a1=1,∴a2=1,
=1,
=3,
=4,…,
=n.
累积得an=
(n≥2).
答案:![]()