题目内容

定义在R上的函数f(x)满足数学公式,且函数数学公式为奇函数,给出下列命题:
(1)函数f(x)的周期为数学公式
(2)函数f(x)关于点数学公式对称,
(3)函数f(x)关于y轴对称.其中正确的是______.

解:由题意定义在R上的函数y=f(x)满足条件
故有 恒成立,故函数周期是3,
故(1)错;
又函数 是奇函数,其图象关于原点对称,
而函数y=f(x)的图象可由函数 的图象向左平移个单位得到,
故函数y=f(x)的图象关于点 对称,
由此知(2)(3)是正确的选项,
故答案为:(2)(3)
分析:先由恒等式 得出函数的周期是T=3,可以判断(1)错,再由函数 是奇函数求出函数的对称点来判断(2)、(3);即可得答案.
点评:本小题主要考查函数奇偶性的性质、奇偶函数图象的对称性、函数的周期性等基础知识,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网