题目内容
分析:设5个开关依次为1、2、3、4、5,由电路知识分析可得电路接通,则开关1、2与3、4、5中至少有1个接通,依次分析开关1、2与3、4、5中至少有1个接通的情况数目,由分步计数原理,计算可得答案.
解答:
解:根据题意,设5个开关依次为1、2、3、4、5,
若电路接通,则开关1、2与3、4、5中至少有1个接通,
对于开关1、2,共有2×2=4种情况,其中全部断开的有1种情况,则其至少有1个接通的有4-1=3种情况,
对于开关3、4、5,共有2×2×2=8种情况,其中全部断开的有1种情况,则其至少有1个接通的8-1=7种情况,
则电路接通的情况有3×7=21种;
故选C.
若电路接通,则开关1、2与3、4、5中至少有1个接通,
对于开关1、2,共有2×2=4种情况,其中全部断开的有1种情况,则其至少有1个接通的有4-1=3种情况,
对于开关3、4、5,共有2×2×2=8种情况,其中全部断开的有1种情况,则其至少有1个接通的8-1=7种情况,
则电路接通的情况有3×7=21种;
故选C.
点评:本题考查分步计数原理的应用,可以用间接法分析开关至少有一个闭合的情况,关键是分析出电路解题的条件.
练习册系列答案
相关题目